THE HYPO-EUCLIDEAN NORM OF AN n−TUPLE OF VECTORS IN INNER PRODUCT SPACES AND APPLICATIONS
نویسنده
چکیده
The concept of hypo-Euclidean norm for an n−tuple of vectors in inner product spaces is introduced. Its fundamental properties are established. Upper bounds via the BoasBellman [1]-[3] and Bombieri [2] type inequalities are provided. Applications for n−tuples of bounded linear operators defined on Hilbert spaces are also given.
منابع مشابه
From the Lorentz Transformation Group in Pseudo-Euclidean Spaces to Bi-gyrogroups
The Lorentz transformation of order $(m=1,n)$, $ninNb$, is the well-known Lorentz transformation of special relativity theory. It is a transformation of time-space coordinates of the pseudo-Euclidean space $Rb^{m=1,n}$ of one time dimension and $n$ space dimensions ($n=3$ in physical applications). A Lorentz transformation without rotations is called a {it boost}. Commonly, the ...
متن کاملOn Generalized Holder Inequality
A FAMILY of inequalities concerning inner products of vectors and functions began with Cauchy. The extensions and generalizations later led to the inequalities of Schwarz, Minkowski and Holder. The well known Holder inequality involves the inner product of vectors measured by Minkowski norms. In this paper, another step of extension is taken so that a Holder type inequality may apply to general...
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملUpper Bounds for the Euclidean Operator Radius and Applications
The main aim of the present paper is to establish various sharp upper bounds for the Euclidean operator radius of an n-tuple of bounded linear operators on a Hilbert space. The tools used are provided by several generalizations of Bessel inequality due to Boas-Bellman, Bombieri, and the author. Natural applications for the norm and the numerical radius of bounded linear operators on Hilbert spa...
متن کاملOn Reverses of Some Inequalities in n-Inner Product Spaces
In 1964, Gähler 1 introduced the concept of 2-norm and 2-inner product spaces as generalization of norm and inner product spaces. A systematic presentation of the results related to the theory of 2-inner product spaces can be found in the book in 2, 3 and in list of references in it. Generalization of 2-inner product space for n ≥ 2 was developed by Misiak 4 in 1989. Gunawan and Mashadi 5 in 20...
متن کامل